بخش سوم

بهسازى سيستم

در قسمت دوم از اين مجموعه و طى مباحث مختلف فصل دوم، با روشها و تكنيكهالى مختلف تقويت موضعى اعضا آشـنا شديه. هر چند كه سازهها مجموعهاى از اعضا مى اشاشند ولى لزوماً رفتار آنها مجموع رفتار اعضا نيست و سيستم كلى ساختمان داراى شخصيت رفتارى متفاوت مىباشد. در بهسازى ساختمان، هدف اول، بهسازى سيستم اسـت كـه در آن مهنــدس مـسئول بــه دنبـال
 تقويت اجزايى از سازه و يا اضافه كردن اجزاى جديد به سازه باشد.

راهبردهاى زير به عنوان نمونه مىتواند به صورت منفرد يا در تركيب با يكديگر براى تعيين و انتخاب كزينههاى بهـسازى سيستم باربر جانبى سازه مورد استفاده قرار گيرد.

الف- حذف يا كاهش نامنظمى در سازه 1- حذف يا كاهش نامنظمى در پالان r- حذف يا كاهش نامنظمى در ارتفاع
r- حذف طبقه نرم

ه- حذف مكانيسم ستون كوتاه از سازه
צ- حذف يا اصلاح كنجهاى فرورقته
ب- تامين سختى جانبى لازم براى كل سازه؛
پ- تامين مقاومت لازم براى كل سازه؛
ت- كاهش جرم ساختمان؛
ث- كامل نمودن مسير بار؛
ج- افزايش انسجام ساختمان با كلافبندى؛
ج- تغيير كاربرى به منظور كاهش سطح عملكرد مورد انتظار از ساختمان؛
ح- به كار گيرى سيستمهاى جاذب انرثى؛
خ- به كارگيرى سيستم جداساز لرزاى؛
در بيشتر اوقات براى تعيين راهبردها و راهكارهاى بهسازى سيستم باربر جانبى، محدوديتهايى وجود دارد كه تاثير عمدهاى بر راهبرد و راهكار انتخابى براى بهسازى مى گذارند. مجموعه اين محدوديتها را مىتوان به صورت زير طبقهبندى نمود:

> الف- اهداف عملكردى ساختمان
> ب - محلوديت هزينههاى اجرايى
> ״ - محدوديتهاى زمانى در امر بهسازى
> ت - محلوديتهایى معمارى (یلان و نما)

ث - ضرورت فعال بودن ساختمان در حين بهسازى
ج - يرهيز از ريسك در زمان بهسازى
ج ج - لزوم حفظ آثار باستانى

فصل

حذف و يا كاهش نامنظمى در
سازه

ب- ا - معرفى

با توجه به عملكرد ساختمانما در زلزلههاى گذشته، اهميت پيكربندى و منظم بودن ساختمانها بر كسى پوشـيده نيـست. بــه همين جهت رعايت تقارن و تناسبات هندسى در سازه و معمارى، مىتواند از بـسيارى از آسـيبهـاى لـرزهاى وارد بـر سـاختمان هـا جلوگيرى كند. مطالعه رفتار ساختمانها در زلزلههاى گذشته نشان مىدهد كه عملكرد ساختمانهــا نـسبت بـه تغييـرات كـوچكى در تقارنٍ شكل كلى ساختمان، بسيار حساس مىباشد. اين امر بويزه در ارتباط با ديوارهاى برشى و ساير اجزاى مقاوم در برابر نيروهـاى جانبى مطرح است.

در ساختمانهايیى كه به دليل نامنظمى در پلان و ارتفاع، فاقد عملكرد لرزایى مطلوب مىباشند، با انجام اصلاحاتى در جهـت
رفع و يا كاهش نامنظمى (همراه با ساير راهبردهاى بهسازى) مىتوان راهكارهاى مناسبى براى بهسازى آنها ارائه كرد. نامنظمى در ساختمان، معمولاً به دليل ناييوستگى در اجزاء باربر جانبى بوجود مى آيد. در چنين شرايطى با ايجـاد تغييراتـى در سيستم باربر جانبى، ممكن است بتوان نامنظمى ساختمان را كاهش داد. نامنظمىها در ساختمان به دو دستئ نامنظمىهــا در پـلان و

نامنظمىها در ارتفاع تقسيم مىشوند.
نامنظمىها در پلان بطور عمده عبارتند از نامنظمى پيحشیى، وجود بازشوهاى بزرگ در ديافراگمها، مـوازى و متعامـد نبـودن سيستمهاى باربر جانبى، وجود گوشههاى فرورفته (پلانهای L,U,T و يا صليبى شكل) و جابجايى و تغييـرات سـازهاى در پــلانهـا. نامنظمى هاى موجود در ارتفاع نيز عبارتند از وجود طبقdٔ نرم، وجود طبقهُ ضعيف، توزيع نامنظم جرم در ارتفاع، تغييـر صـفحه اجـزاى لباربر جانبى 'و استفاده از سيستمهاى باربر جانبى متفاوت در ارتفاع. در جدول r-ا انواع نامنظمىها و مكانيسمهـاى خرابـى در آنها

جدول 「 ${ }^{\text {- ا انواع نامنظمى ها و مكانيسم خرابى در أنها }}$

مكانيسم خرابى	شكل و موقعيت ساختمان در پلان	نوع نامنظمى
		نامنظمى بيحشى
		وجود كنجهاى فرو رفته (شكل L)

[^0]جدول س-(انواع نامنظمى ها و مكانيسم خرابى در آنها (ادامه)

مكانيسم خرابى	شكل و موقعيت ساختمان در پلان	نوع نامنظمى
		وجود بازشوهاى بزر گی در ديافراگمهها
		موازى و متعامد نبودن سيستهمهاى باربر جانبى
		قطع ديوارهاى برشى (سيستم باربر جانبى) در ارتفاع
		وجود طبقةٔ نرم
		توزيع نامنظم جرم در
		بكارگيرى سيستمهاى متفاوت در ارتفاع
		نامنظمى در مسير ع انتقال
4 HaCl	Cun -0,	وجود طبقأ ضعيف

سيستم مقاوم در برابر بارهاى جانبى كه بتواند بار ناشى از زلزله را از طبقات به پی منتقل كند، بايد بين پی و ديـافراگمهـــاى
 در مسير انتقال بار، ناييوستگى وجود داشته و مسير انتقال بار كامل نباشد، عليرغم وجود اعضاى جـانبى مناسـب در سـاختمان، سـازه توانايى مقاومت در برابر نيروهاى لرزهاى را نخواهد داشت.

r-

> r- - - - نامنظمى در چلان

نامنظمى در پالن ساختمان، باعث توليد نيروهاى پيحشیى در ساختمان تحت اثر نيروهـاى جـانبى مـى گـردد. ايـن نيروهـاى
 سازهاى گشته و مىتواند منجر به خرابى گردد. مطابق با بند ا-^-ا-1 آييننامه . .^ז، ساختمانهايیى با مشخـصات ذيـل در گـروه ساختمانهاى منظم در پالان قرار مى گيرند: ا- پلان ساختمان داراى شكل متقارن و يا تقريباً متقارن نسبت به هحورهاى اصلى ساختمان، كه معمولاً عناصر مقـاوم در
 هז درصد بعد خارجى ساختمان در آن امتداد تجاوز ننمايد. r- در هر طبقه فاصله بين مركز جرم و مركز سختى در هر يك از دو امتداد متعامد ساختمان از • ب درصد بعد سـاختمان در آن امتداد بيشتر نباشد.
r- تغييرات ناگِانى در سختى ديافراگم هر طبقه نسبت به طبقات مجاور از •ه درصد بيشتر نبوده و مجموع سـطوح بازشـو
در آن از •ه. سطح كل ديافراگم تجاوز ننمايد.

ץ ه- در هر طبقه حداكثر تنييرمكان نسبى در انتهاى ساختمان، با احتساب ييحش تصادفى، بيـشتر از •「 درصــد بـا متوسـط تغيير مكان نسبى دو انتهاى ساختمان در آن طبقه اختلاف نداشته باشد.

نامنظمى قائم در ساختمانها شامل طبقه ضعيف، نامنظمى هندسى و نامنظمى در وزن طبقات مى باشد كه سبب اعمال نيروى
قابل ملاحظه اضافى به برخى از اعضا در اين طبقات مى گردد.
مطابق بابند 1-1-1 Y-1 ساختمان هاى بامشخصات زيردر گروه ساختمانهاى منظم در ارتفاع قرار مى گيرند:
1- توزيع جرم در ارتفاع ساختمان، تقريباً يكنواخت باشد به طورى كه جرم هيج طبقهاى، بها استثناى بام و خريشته بام نسبت به جرم طبقه زير خود بيشتر از •هـ\% تغيير نداشته باشد.
 سختى سه طبقه روى خود نباشد، به عبارت ديگَر هيج طبقهاى نرم نباشد.

א- مقاومت جانبى هيج طبقهاى كمتر از •^٪\% مقاومت جانبى طبقه روى خود نباشـد (هـيج طبقـهاى ضـعيف نباشـد). مقاومت هر طبقه برابر با مجموع مقاومت جانبى كليه اجزاى مقاومى است كه بـرش طبقـه رادر جهـت مـوردنظر تحمل مىنمايند.

وجود طبقه نرم يكى از معايب بسيار متداول در ساختمانها مىباشد. مطـابق آيـيننامـه طراحـى سـاختمانمها در برابـر زلزلـه (استاندارد ••^ץ ويرايش سوم)، طبقهاى كه سختى جانبى آن كمتر از •V درصد سختى جانبى طبقه روى خود و يا كمتر از •^ درصد متوسط سختى سه طبقه روى خود باشد، طبقأ نرم ناميده مىشود.

يكى از مشخصdهاى اصلى طبقه نرم ناييوستگى در استحكام يا سختى است كه در اتصالات ايجاد مىشود. ايـن ناييوسـتگى بدين سبب ايجاد مىشود كه هرچه طبقهُ نرم ساختمان، استحكام كمتر و يا انعطافپذيرى بيشترى داشـته باشــ، تغييـر شـكلهــاى بيشترى در آن ايجاد مىشود كه به نوبهٔ خود به تمر كز نيروها در اتصالات مىانجامد (شكلץ-1).

طبقه نرم معمولا در اولين تراز ساختمان بوجود مىآيد، ولى در موارد خاصى مىتواند در يكى از طبقات بالايى نيز اتفاق افتـد

به منظور اصلاح طبقه نرم، مىتوان از راهكارهايى نظير اضافه كردن مهاربندهاى فلزى، اضافه كردن ديوارهاى برشى بتنى و يا فلزى، اضافه نمودن قابهاى خمشى، ايجاد ديوارهاى حائل و ... استفاده نمود. در اين حالت با حذف نامنظمى فوق سـختى طبقـه و در نتيجهٔ آن توزيع نيروى زلزله اصلاح مى گردد (شكلr-a).

شكل r-r- الف- وجود طبقه نرم در اولين تراز، ب- وجود طبقه نرم در طبقات بالايى

متداولترين علت به وجود آملن طبقه نرم اختالاف سختى جانبى طبقه فوقانى و تحتانى سازه مىباشــد بــه طـورى كـهـ اگـر سختى جانبى در طبقهاى كمتر از •V درصد سختى جانبى طبقه روى خود و يا كمتر از •^ درصد متوسط سختى سه طبقه روى خـود باشد طبقه نرم به وجود مىآيد. ولى علاوه بر انعطافپذيرى زياد طبقات تحتانى، ناييوستگى در مسيرهاى بارثقلى و جانبى و همچچنين

در شكل (ץ-ヶ) زير مراحل اضافه نمودن قاب خمشى براى يكى ساختمان با طبقه نرم، به عنوان راهكار بكار گرفتـه شـده در
جهت حذف نامنظمى، نشان داده شده است. اين مراحل شامل ايجاد فونداسيون جديد و شنازبندى، نصب سـتونهـا و تيرهـاى قـاب خمشى جديد و اتصال آن به سيستم اوليه مىباشد.

شكل ؟-Y- مراحل اضافه نمودن قاب خمشى براى اصلاح طبقه نرم

يكى از دلايل عمده خرابىهاى شديد تحت زلزله ، ايجاد پيچچش در ساختمان مىباشد. در صورتى كه فاصلهُ بين مركز جرم و مر كز سختى در هر كدام از امتدادهاى اصلى ساختمان زياد باشد، ساختمان دچار پیچֶش گرديده و نيروى پيچشیى ايجاد شده مىتواند باعث خرابى در سازه شود (شكل س-צ).

مطابق آييننامه طراحى ساختمانها در برابر زلزله (استاندارد • • Y ويرايش سوم) ، فاصلةٔ بين مركز جرم و مركـز سـختى در
هر كدام از دو امتداد متعامد ساختمان، نبايد از • + درصد بُعد ساختمان در آن امتداد بيشتر باشد.

شكل ؟-؟- فاصله زياد بين مركز جرم و مركز سختى و خرابى ناشى از ايجاد پيچشی

$$
\begin{aligned}
& \text { برخى از دلايل وجود فاصله بين مركز جرم و مركز سختى عبارتند از: } \\
& \text { - قرارگيرى نامتقارن اعضاى قائم } \\
& \text { - قرارگيرى جرمهاى بزرگ بصورت نامتقارن } \\
& \text { - اثر نامتقارن ميان قابها و افزايش سختى ناشى از آنها }
\end{aligned}
$$

در شكل (V-Y) نحوهٔ ايجاد نيروهاى پيچشى در يک سازه، به دليل وجود ديواربرشي نامتقارن و در نتيجه ايجاد فاصـله بـين مر كز جرم و مر كز سختى، نشان داده شده است. براى اصلاح نامنظمى پيچֶشى نيز مى توان از راهكارهاى اضافه كردن ديوار برشى و مهاربند بصورت متقارن در پالن استفاده كرد.

شكل س-V- نحوه ايجاد پيحچش به دليل وجود ديوار برشى نامتقارن
 شده نشان داده شده است. اين شرايط موجب به وجود آمدن يِيحش در سازه در اثر زلزله مى گرددد.

شكل ऍ-^- نحوه ايجاد پییشش به علت توزيع نامتقارن جرم ساختمان

سازههايى كه داراى المانهاى قائم سازماى با اندازههاى مختلف هستند شكل (ץ-9) مانند سازههايى كه بر روى زمينهـاى شيبدار احداث مى گردند نيز دهار يِحش مىشوند. اين امر را مىتوان به كودكى كه بر روى تابى با طنابهاى نامساوى نشسته تشبيه نمود. علت اين امر، تغيير سختى در قابهاى مختلف مىباشد.

شكل ب-q- نحوه ايجاد پيچش به علت وجود المانهاى قائه, سازهاى با اندازههاى مختلف

شكل متداولترى از نامنظمى ييحشى مربوط به تغييرات مقاومت و سختى در طول محيط ساختمانها مىباشد كه نتيجه آن
 باشد (شكل r- • ().

شكل س-+ ا - نامنظمى به دليل تغييرات مقاومت و سختى در طول محيط ساختمان

در شكل (ॅ-1 (1) برخى از راهكارهاى متداول براى حالتى كه در يك وجه ساختمان عضو باربر جانبى با سختى زياد و در دو وجه ديگر ديوارهاى غير سازه ای و انعطاف پذير وجود دارد ، نشان داده شده است.

شكست تُرد و برشى ستونها به دليل ماهيت ناگُانى آن بدترين نوع شكست مىباشد. به همين دليل همـواره سـى بـر آن
 شكست برشى ستون را الصطلاحاً ستون كوتاه مى گويند و بايد همواره سازه به كَونهاى طراحى و يا مقـاومسـازى گــردد كـهـ از وقـوع چچنين امرى دورى شود (شكل r-r (ו).

شكل r-r ا - ايجاد برش و دورانهاى زياد در ستونهاى كوتاه
تشكيل مكانيسم ستون كوتاه معمولاً باعث انهدام سازه مى گردد. در صورتى كه ديوار مخصوصاً ديوار باربر تنها در قـسمتى از ستون اجرا شود، در هنگام زلزله در ستون نيروى برشى بزر گیى به وجود مى آيد كه اين امر منجر به مكانيسم ستون كوتاه مى گردد. در در

شكل ז-זّا - تشكيل مكانيسم ستون كوتاه

راهكارهاى حذف ستون كوتاه شامل دو دسته كلى مىباشد:
الف- جداسازى ديوار و ستون:
در اين روش با ايجاد فاصله بين ديوار و ستون و پر نمودن آن با مواد پر كننــده انعطـافپـذير از ايجـاد نيروهـاى برشى در ستون و در نتيجه ايجاد مكانيسم ستون كوتاه جلوگيرى مى گردد. بـراى محاسـبه فاصـله بـين ديـوار و ستون بايد اثر P- سازه را منظور نمود (شكل r-ها).

شكل ؟-ه ا - جداسازى ديوار و ستون

> ب- اجراى جزئيات مناسب و شكلپذير در ستونها:

با اجراى جزئيات مناسب و شكلپیير در ستونها مىتوان توانايى ستون در برابر نيروهاى برشى و تغييرشكلهاى بزرگ را افزايش داد (شكل r-ء
).

شكل سـ-؟ ا - اجراى جزئيات مناسب و شكلپپير در ستونها

نامنظمى كوشه فرورفته، مشخصةٔ مشتر ك كليه پيكربندىهاى ساختمانى است كه در پلان، شكلهايى به صـورت T , T,

در اين نوع سازهها سختى عناصر در كنج ها، در هر يك از جهات متفاوت بوده و در نتيجه قسمتهاى مختلف بصورت كـامالاً متفاوت نوسان مى كنند، كه اين امر باعث ايجاد تمركز تنش در گوشههاى فرورفته مىشود. (شكل r-
).

مشكل ديگر اين نوع سازه ها مربوط به هيحش ايجاد شده در آنها میىباشد. تمر كـز تـنش در محـل شـكاف و آثـار ناشى از

$$
\begin{aligned}
& \text { - جرم ساختمان } \\
& \text { سيستم سازه ایى } \\
& \text { - } \\
& \text { - ارتفاع بالها و نسبت (ارتفاع/ عمق) آنها }
\end{aligned}
$$

شكل r- إ - تمركز تنش در كنج يك ساختمان L شكل

شكل ץ-+ + ايجاد پيچشى و تمر كز تنش در ساختمانهاى با نامنظمى گَوشههاى فرورفته
راهكارهايى كه مىتواند براى بهسازى اين نوع از نامنظمى بكار كرفته شوند شامل جداسازى سازه ایى ساختمان به دو بخـش
 محيطى، حذف كنج با استفاده از پخى ها و رفع نامنظمى يِيحشى توسط راهكارهايیى كه در قبل ارائه شد مى باشد (شكل بی-

ب- يكپارچه سازى با مقاوم سازى عناصر محيطى

د- حذف كنج هاى فرورفته با استفاده از پخىها

الف- جداسازى ساختمانها

ج- تقويت موضعى اجزا درمحل خطوط تمر كز تنش

فصلf

افزايش مقاومت و سختى جانبى
ساز

[^0]:
 سازه مى كردد.

